Magnetic Catechol-Chitosan with Bioinspired Adhesive Surface: Preparation and Immobilization of ω-Transaminase

نویسندگان

  • Kefeng Ni
  • Xu Zhou
  • Li Zhao
  • Hualei Wang
  • Yuhong Ren
  • Dongzhi Wei
چکیده

The magnetic chitosan nanocomposites have been studied intensively and been used practically in various biomedical and biological applications including enzyme immobilization. However, the loading capacity and the remained activity of immobilized enzyme based on existing approaches are not satisfied. Simpler and more effective immobilization strategies are needed. Here we report a simple catechol modified protocol for preparing a novel catechol-chitosan (CCS)-iron oxide nanoparticles (IONPs) composites carrying adhesive moieties with strong surface affinity. The ω-transaminase (ω-TA) was immobilized onto this magnetic composite via nucleophilic reactions between catechol and ω-TA. Under optimal conditions, 87.5% of the available ω-TA was immobilized on the composite, yielding an enzyme loading capacity as high as 681.7 mg/g. Furthermore, the valuation of enzyme activity showed that ω-TA immobilized on CCS-IONPs displayed enhanced pH and thermal stability compared to free enzyme. Importantly, the immobilized ω-TA retained more than 50% of its initial activity after 15 repeated reaction cycles using magnetic separation and 61.5% of its initial activity after storage at 4°C in phosphate buffered saline (PBS) for 15 days. The results suggested that such adhesive magnetic composites may provide an improved platform technology for bio-macromolecules immobilized.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell-Adhesive Bioinspired and Catechol-Based Multilayer Freestanding Membranes for Bone Tissue Engineering

Mussels are marine organisms that have been mimicked due to their exceptional adhesive properties to all kind of surfaces, including rocks, under wet conditions. The proteins present on the mussel’s foot contain 3,4-dihydroxy-L-alanine (DOPA), an amino acid from the catechol family that has been reported by their adhesive character. Therefore, we synthesized a mussel-inspired conjugated polymer...

متن کامل

Chitosan-g-hematin: enzyme-mimicking polymeric catalyst for adhesive hydrogels.

Phenol derivative-containing adhesive hydrogels has been widely recognized as having potential for biomedical applications, but their conventional production methods, utilizing a moderate/strong base, alkaline buffers, the addition of oxidizing agents or the use of enzymes, require alternative approaches to improve their biocompatibility. In this study, we report a polymeric, enzyme-mimetic bio...

متن کامل

Bioinspired pH and magnetic responsive catechol-functionalized chitosan hydrogels with tunable elastic properties.

We have developed pH- and magnetic-responsive hydrogels that are stabilized by both covalent bonding and catechol/Fe(3+) ligands. The viscoelastic properties of the gels are regulated by the complexation valence and can be used to tune drug release profiles. The stable incorporation of magnetic nanoparticles further expands control over the mechanical response and drug release, in addition to p...

متن کامل

Fe3O4-chitosan nanoparticles as a robust magnetic catalyst for efficient synthesis of 5-substituted hydantoins using zinc cyanide

In this paper, Fe3O4-chitosan nanoparticles were prepared by the immobilization of chitosan on the surface of Fe3O4 nanoparticles. Then, the 5-substituted hydantoins were synthesized from the condensation of aldehyde derivatives, ammonium carbonate and zinc cyanide as a well-known cyanating agent by the magnetic Fe3O4-chitosan nanoparticles under neat conditions. Fe3O4-Chitosan nanocatalyst as ...

متن کامل

Immobilization of ω-transaminase by magnetic PVA-Fe3O4 nanoparticles

ω-Transaminase (ω-TA) as a kind of important biocatalyst is widely used in preparation of chiral intermediates. In this paper, a magnetic PVA-Fe3O4 nanoparticles was prepared and employed on immobilization of ω-TA to reduce the cost, increase reusability and enhance stability. The prepared magnetic PVA-Fe3O4 nanoparticles were characterized by transmission electron microscope (TEM), X-ray diffr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012